On the stability of shocks in isothermal black hole accretion discs
Jun 12, 2022·,,·
0 min read
Eric W. Hester
Geoffrey M. Vasil
Martin Wechselberger
Abstract
Most black holes possess accretion discs. Models of such discs inform observations and constrain the properties of the black holes and their surrounding medium. Here, we study shocks in a thin isothermal black hole accretion flow. Modelling infinitesimal viscosity allows the use of multiple-scales matched asymptotic methods. We thus derive the first explicit calculations of isothermal shock stability. We find that the inner shock is always unstable, and the outer shock is always stable. The growth/decay rates of perturbations depend only on an effective potential and the incoming–outgoing flow difference at the shock location. We give a prescription of accretion regimes in terms of angular momentum and black hole radius. Accounting for viscous angular momentum dissipation implies unstable outer shocks in much of parameter space, even for realistic viscous Reynolds numbers of the order $\approx 10^{20}$.
Type
Publication
Monthly Notices of the Royal Astronomical Society